一级做a免费观看大全视频,中文字幕乱码无限2019,日日麻批40分钟免费视频播放,精品专区性色av,国产性夜夜春夜夜爽,岛国三级片免费看久久,久久五月天和激情网

Vaccine design could dramatically improve cancer immunotherapies: study

Source: Xinhua| 2019-05-09 06:39:30|Editor: yan
Video PlayerClose

CHICAGO, May 8 (Xinhua) -- After comparing a series of compositionally identical yet structurally different vaccines by testing them on multiple animal models, researchers at Northwestern University found the structure of spherical nucleic acids (SNAs) in one vaccine dramatically outperformed others in stimulating cancer-quelling immune responses.

In the study, the researchers compared SNAs that have different structures but the same peptides, DNA and other general components. All vaccines included an antigen, a substance that is recognized and targeted by an immune response; and an adjuvant, a substance that enhances the body's immune response to the antigen. In this case, the DNA is the adjuvant, and the peptide is the antigen.

The only thing that changed in each vaccine was the position of the peptide antigen, which was either housed in the core of the SNA, interspersed with the DNA or attached to the DNA. These changes led to major differences in how the immune system recognized and processed molecular cues, which ultimately affects the quality of the immune response generated by the vaccine.

In the study, the peptide antigen interspersed with the DNA performed best.

"The study shows that SNAs and our ability to refine SNA structures can dramatically improve the anti-tumor immune responses," said Bin Zhang, professor of medicine and microbiology-immunology at the Northwestern University Feinberg School of Medicine. "This shows promise in our ability to improve the performance of vaccines and eventually use them in patient care."

Vaccines with the superior structure completely eliminated tumors in 30 percent of animals and improved their overall survival from cancer. The vaccine also protected the animals from reemerging tumors.

The development of SNAs could be the breakthrough. SNAs are synthetic globular, rather than linear, forms of DNA and RNA that surround a nanoparticle core. Roughly 50 nanometers in diameter, the tiny structures possess the ability to enter cells, including immune cells, for targeted treatment delivery.

The study, posted on NU website on Monday, is scheduled to be published online in the Proceedings of the National Academy of Sciences this week.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105521380441091


一级做a免费观看大全视频,中文字幕乱码无限2019,日日麻批40分钟免费视频播放,精品专区性色av,国产性夜夜春夜夜爽,岛国三级片免费看久久,久久五月天和激情网 国产视频观看91 国产00在线视频国产 国产综合色视频久久久 久久成人国产精品一区二区 高清无码免费黄色网站